GACEM: Genetic Algorithm Based Classifier Ensemble in a Multi-sensor System

نویسندگان

  • Rongwu Xu
  • Lin He
چکیده

Multi-sensor systems (MSS) have been increasingly applied in pattern classification while searching for the optimal classification framework is still an open problem. The development of the classifier ensemble seems to provide a promising solution. The classifier ensemble is a learning paradigm where many classifiers are jointly used to solve a problem, which has been proven an effective method for enhancing the classification ability. In this paper, by introducing the concept of Meta-feature (MF) and Trans-function (TF) for describing the relationship between the nature and the measurement of the observed phenomenon, classification in a multi-sensor system can be unified in the classifier ensemble framework. Then an approach called Genetic Algorithm based Classifier Ensemble in Multi-sensor system (GACEM) is presented, where a genetic algorithm is utilized for optimization of both the selection of features subset and the decision combination simultaneously. GACEM trains a number of classifiers based on different combinations of feature vectors at first and then selects the classifiers whose weight is higher than the pre-set threshold to make up the ensemble. An empirical study shows that, compared with the conventional feature-level voting and decision-level voting, not only can GACEM achieve better and more robust performance, but also simplify the system markedly.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fault Detection of Bearings Using a Rule-based Classifier Ensemble and Genetic Algorithm

This paper proposes a reduct construction method based on discernibility matrix simplification. The method works with genetic algorithm. To identify potential problems and prevent complete failure of bearings, a new method based on rule-based classifier ensemble is presented. Genetic algorithm is used for feature reduction. The generated rules of the reducts are used to build the candidate base...

متن کامل

Predicting cardiac arrhythmia on ECG signal using an ensemble of optimal multicore support vector machines

The use of artificial intelligence in the process of diagnosing heart disease has been considered by researchers for many years. In this paper, an efficient method for selecting appropriate features extracted from electrocardiogram (ECG) signals, based on a genetic algorithm for use in an ensemble multi-kernel support vector machine classifiers, each of which is based on an optimized genetic al...

متن کامل

A Novel Ensemble Approach for Anomaly Detection in Wireless Sensor Networks Using Time-overlapped Sliding Windows

One of the most important issues concerning the sensor data in the Wireless Sensor Networks (WSNs) is the unexpected data which are acquired from the sensors. Today, there are numerous approaches for detecting anomalies in the WSNs, most of which are based on machine learning methods. In this research, we present a heuristic method based on the concept of “ensemble of classifiers” of data minin...

متن کامل

Combining Classifier Guided by Semi-Supervision

The article suggests an algorithm for regular classifier ensemble methodology. The proposed methodology is based on possibilistic aggregation to classify samples. The argued method optimizes an objective function that combines environment recognition, multi-criteria aggregation term and a learning term. The optimization aims at learning backgrounds as solid clusters in subspaces of the high...

متن کامل

Combining Classifier Guided by Semi-Supervision

The article suggests an algorithm for regular classifier ensemble methodology. The proposed methodology is based on possibilistic aggregation to classify samples. The argued method optimizes an objective function that combines environment recognition, multi-criteria aggregation term and a learning term. The optimization aims at learning backgrounds as solid clusters in subspaces of the high...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2008